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Abstract

Human genetic background strongly influences susceptibility to malaria infection and progression to severe disease and
death. Classical genetic studies identified haemoglobinopathies and erythrocyte-associated polymorphisms, as protective
against severe disease. High throughput genotyping by mass spectrometry allows multiple single nucleotide
polymorphisms (SNPs) to be examined simultaneously. We compared the prevalence of 65 human SNP’s, previously
associated with altered risk of malaria, between Tanzanian children with and without severe malaria. Five hundred children,
aged 1–10 years, with severe malaria were recruited from those admitted to hospital in Muheza, Tanzania and compared
with matched controls. Genotyping was performed by Sequenom MassArray, and conventional PCR was used to detect
deletions in the alpha-thalassaemia gene. SNPs in two X-linked genes were associated with altered risk of severe malaria in
females but not in males: heterozygosity for one or other of two SNPs in the G6PD gene was associated with protection
from all forms of severe disease whilst two SNPs in the gene encoding CD40L were associated with respiratory distress. A
SNP in the adenyl cyclase 9 (ADCY9) gene was associated with protection from acidosis whilst a polymorphism in the IL-1a
gene (IL1A) was associated with an increased risk of acidosis. SNPs in the genes encoding IL-13 and reticulon-3 (RTN3) were
associated with increased risk of cerebral malaria. This study confirms previously known genetic associations with protection
from severe malaria (HbS, G6PD). It identifies two X-linked genes associated with altered risk of severe malaria in females,
identifies mutations in ADCY9, IL1A and CD40L as being associated with altered risk of severe respiratory distress and
acidosis, both of which are characterised by high serum lactate levels, and also identifies novel genetic associations with
severe malaria (TRIM5) and cerebral malaria(IL-13 and RTN3). Further studies are required to test the generality of these
associations and to understand their functional consequences.
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Introduction

In spite of recent evidence of successful control in some

countries [1,2,3], malaria still constitutes a major cause of child

morbidity and mortality, especially in sub Saharan Africa [4,5].

Although the number of deaths from malaria remains high, the

absolute risk of any particular infection progressing to severe

disease is less than 1%, even in young children who appear to have

similar, often low, levels of acquired immunity [6]. The risk factors

for severe disease, and the reasons for the wide variation in clinical

manifestations of malaria among children who appear to exhibit

similar risks for severe disease, are poorly understood. This

unexplained variation in disease severity and syndromic pheno-

type constitutes a major challenge to our understanding of the

disease, its treatment and control.

Although parasite diversity, host age, acquired immunity and

overall health status may all influence the risk of severe disease

complications, it has been estimated that 25% of this risk can be

accounted for by variations in host genotype [7]. The different

geographic distributions of sickle-cell disease, a-thalassaemia,

glucose-6-phosphate dehydrogenase (G6PD) deficiency, ovalocy-

tosis, and the Duffy-negative blood group are examples of the

general principle that different populations have evolved different

genetic variants to protect against malaria (see [8] for a review).

The most striking example is the beta-globin HBB gene, in which

three different coding SNPs confer protection against malaria:
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Glu6Val (HbS), Glu6Lys (HbC), and Glu26Lys (HbE). The HbS

allele is common in Africa but rare in Southeast Asia, whereas the

opposite is true for the HbE allele. In Tanzania, strong

associations have been described between malaria transmission

intensity and polymorphisms of both the HbS and alpha-

thalassaemia genes [9]. In addition to the sickle polymorphism

(HbS) [10], G6PD (reviewed in [11]), and ABO blood group

[12,13], a number of other traits have been proposed for the

reduced risk of severe malaria. Consistent with the view that severe

malaria disease is, at least in part, an inflammatory process

mediated by disordered immune responses [14] many of these

traits are polymorphisms in genes that are relevant to immunity

and inflammation such as the tumor necrosis factor (TNF, MHC

class III region, reviewed in [15], Toll-like receptors (TLR-4,9)

[16], CD40 ligand (CD40L) [17], the interferon gamma (IFNG)

(reviewed in [18]), and the Nitric oxide synthase type 2 (NOS2A)

genes (reviewed in [19]).

Here we test a panel of 65 SNPs, previously linked to altered risk

of malaria or other infectious diseases, including the HbS and

ABO polymorphisms, for association with severe malaria, and

with the various clinical presentations of severe malarial disease.

Our study is the first to comprehensively survey candidate SNPs in

Tanzanians resident in a hyperendemic area of malaria with a

high incidence of severe malaria disease and reveals X-linked

polymorphisms that affect risk of severe disease in females but not

in males, as well as polymorphisms in genes associated with

inflammation, antigen processing and T cell function.

Methods

Ethics Statement
All DNA samples were collected and genotyped following

signed and informed written consent from a parent or guardian.

Ethics approval for all procedures was obtained from both

LSHTM (# 2087) and the Tanzanian National Institute of

Medical Research (NIMR/HQ/R.8a/Vol. IX/392).

Participants, Materials and Methods
Study participants. The study was conducted in Teule

district hospital, Muheza, and surrounding villages in Muheza

district, Tanga region, Tanzania, where mortality in children

under 5 is estimated at 165 per 1000 (Tanzanian census 2002).

Transmission of P. falciparum is intense (50–700 infected bites/

person/year) and perennial, with two seasonal peaks. The

community prevalence of P. falciparum in children aged 2–5 years

in the study area was recorded as 88.2% in 2002 [20].

Cases were recruited during a one-year period between June

2006 and May 2007 as part of a larger study of severe febrile

illness in children [detailed in [21,22]]. Among the children in the

parent study, 509 cases of severe malaria were randomly sampled

from children aged 6 months to 10 years meeting any one of the

following eligibility criteria; history of 2 or more convulsions in the

previous 24 hrs, prostration (unable to sit unsupported if ,9

months of age or unable to drink at any age), reduced

consciousness (Blantyre Coma scale,4), respiratory distress (deep

breathing or indrawing of the lower chest wall), visible jaundice,

severe anaemia (Hb ,5 g/dL), acidosis (blood lactate $5 mmol/

L) or hypoglycaemia (blood glucose ,2.5 mmol/L). Parasite

infection was confirmed by microscopic examination of Giemsa-

stained thick blood films by two independent microscopists.

Participants with known chronic medical conditions were exclud-

ed. Area of residence and ethnic origins of both parents were

recorded from information provided by the caretaker of each

child.

Controls were recruited during a 4 week period in August 2007

and were matched with cases for area of residence (ward), ethnicity

and age, using household census data. Study participants resided

in 33 wards surrounding Muheza town. The participants had a

median age of ,2.6 years and belonged, predominantly, to one of

eight ethnic groups (Table 1).

Sample collection & preparation. Approximately 3 ml of

venous blood was collected from each participant into an EDTA

vacutainer. A blood film was prepared and haemoglobin levels

were measured by Hemocue (HemocueTM, Anglholm, Sweden).

For children in the control group, those with haemoglobin levels of

,11 g/dL and those with a positive blood film were excluded

from genetic analysis and were referred to the nearest health

Table 1. Baseline and clinical characteristics of cases and
controls.

Controls (n = 480) Cases (n = 507)

Age* (median, range) (2.9) (0.9–10.9) (1.7) (0.2–10.0)

Gender - Female 258 53.8% 236 46.5%

Ward

Mtindiro 40 8.3% 49 9.7%

Kwafungo 32 6.7% 43 8.5%

Mkata 32 6.7% 32 6.3%

Kwedizinga 30 6.3% 31 6.1%

Songa 25 5.2% 25 4.9%

Nkumba 21 4.4% 27 5.3%

Segera 23 4.8% 23 4.5%

Maramba 22 4.6% 21 4.1%

Mhinduro 20 4.2% 20 3.9%

Potwe 20 4.2% 20 3.9%

Kilulu 19 4.0% 19 3.7%

Lusanga 18 3.8% 18 3.6%

Kicheba 15 3.1% 18 3.6%

Ngomeni 16 3.3% 16 3.2%

Ethnicity

Mzigua 159 33.1% 149 29.4%

Wasambaa 132 27.5% 131 25.8%

Wabondei 78 16.3% 79 15.6%

Chagga 50 10.4% 47 9.3%

Mmbena 23 4.8% 25 4.9%

Other 5 1.0% 39 7.7%

Mngoni 18 3.8% 19 3.7%

Pare 15 3.1% 18 3.6%

Clinical phenotype

Any severe malaria - - 507 100%

Any SMA** - - 247 48.7%

Any CM - - 99 19.5%

Both SMA+CM - - 41 8.1%

Any RD - - 146 28.8%

Acidosis*** - - 291 57.4%

*in months, SMA = severe malarial anaemia, CM = cerebral malaria,
RD = respiratory distress,
**hb,5 gdl,
***Blood lactate.5 mmol/l.
doi:10.1371/journal.pone.0047463.t001
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facility where they were treated according to Tanzanian Ministry

of Health guidelines. Samples were centrifuged at 5000 rpm for

5 minutes and the plasma removed and stored for future analysis.

DNA was extracted and purified from the blood cell pellet using a

Nucleon kit (http://www.tepnel.com) according to the manufac-

turer’s instructions.

Sample genotyping. Genomic DNA samples underwent

whole genome amplification through either Primer Extension

Pre-amplification (PEP) [23]or Multiple Displacement Amplifica-

tion (MDA) [24], before genotyping on a Sequenom MassArray

genotyping platform [25,26]. Sixty-five candidate SNPs (see

supplementary Table 1) were selected for typing based on an

extensive review of the published data and on emerging data from

the MalariaGEN consortium (http://www.malariagen.net). The

selected SNPs included Haemoglobin variant S (HbS) (rs334) as an

anticipated positive control. The a3.7-thalassaemia deletion was

typed separately by PCR [27].

Phenotypic definition. For analysis, subjects were defined as

having had cerebral malaria (CM) if their Blantyre coma score was

less than 3 on presentation to hospital. A second phenotypic subset

of severe malarial anaemia (SMA) was defined as those subjects

having had a haemoglobin concentration of less than 5 g/dL.

Patients with both CM and SMA were included in the analysis for

both phenotypes. Participants with co-existing severe illnesses

diagnosed on admission, or with known chronic medical

conditions unrelated to a severe malarial infection, were excluded.

Other phenotypes of interest in severe malaria cases included

respiratory distress and acidosis (blood lactate greater than

. = 5 mmol/L). Because of sample size limitations, we do not

present an analysis by ethnic groups or ward of residence.

Statistical analysis. Genotypic deviations from Hardy-

Weinberg equilibrium (HWE) were assessed by chi-square tests.

SNPs were excluded from analysis if they had at least 10% of

genotype calls missing or there was significant deviation from

HWE (p,0.001) in controls. Case-control association analysis

using SNP alleles/genotypes was undertaken by logistic regression

and included the covariates: age, gender, ethnic group (or ward).

We modelled the SNP of interest assuming several related

genotypic mechanisms (additive, dominant, recessive, heterozy-

gous advantage and general models) and reported the minimum p-

value from these correlated tests. All haplotypes were phased using

an expectation-maximisation algorithm [28]. All analyses were

performed using the R statistical package (http://www.r-project.

org). Performing multiple statistical tests leads to inflation in the

occurrence of false positives and using a permutation approach

that accounted for correlation between markers and tests, we

estimated a p-value of #0.02 to be statistically significant.

Results

Seven SNPs were removed from the analysis because they were

either monomorphic (rs2814778, rs33950507, rs1799969,

rs5743611, rs4986791, X_80140046), deviated from HWE in

controls (rs1800750) or had high rates (.10%) of missing genotype

Figure 1. Severe malaria, Minimum p-values from tests of association for the autosomal SNPs. genotypic tests of dominant, recessive,
general, heterozygous advantage, and additive models, adjusted for HbS and ethnicity; in this analysis controls include uncomplicated malaria cases;
the dashed line represents a p-value of 0.002.
doi:10.1371/journal.pone.0047463.g001
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calls (rs1800750), leaving 58 SNPs which could be analysed for

their association with severe malaria.

Figure 1 shows the minimum p-values from the genotypic tests

applied to the autosomal SNPs, and confirms that the sickle cell

(HbS) polymorphism (rs334) was significantly associated with

protection from severe malaria (odds ratio (OR) AS vs AA/SS

0.055, 95% CI 0.022–0.140, p,3e-18). Carriage of the HbS trait

was also associated with protection from each of the different

clinical phenotypes of severe malaria (Table 2 & Figure 2).

Individuals who had a3.7-thalassaemia deletion (in the additive

model) were 30% less likely than individuals without this

polymorphism to develop severe malarial anaemia (p = 0.01) but

were not significantly protected against other forms of severe

disease. There was no statistical interaction between carriage of

the HbS trait and the a3.7 deletion and risk of any severe malaria

complications (Table 3, p.0.4).

Children carrying either the RTN3 (rs 542998 TC vs. CC OR

1.781, 95% CI 1.276–2.487, p = 0.0006) or the IL-13 (rs 20541

CT vs. TT OR 2.02, 95% CI 1.346–3.03, p = 0.0008) SNPs were

more likely than other children to develop CM (Table 2, Figure 2).

Furthermore, heterozygosity for the rs2230739 SNP in the

ADCY9 gene, encoding an adenylate cyclase, was associated with

a 50% reduction in the risk of acidosis (AG vs. AA/GG,

OR = 0.516, 95% CI 0.302–0.882, p = 0.0129) (Table 2, Figure 2).

Two mutations in the G6PD gene on the X chromosome (202:

rs1050828 CT vs. other and 376: rs1050829 CT vs. other) were

strongly associated with protection from severe malaria, and with

protection from each of the different clinical phenotypes of severe

malaria, in heterozygous females (OR = 0.3–0.5; p,0.05–p,8e-6)

but not in hemizygous males (Table 2). The protection was best

explained in the dominant model inheritance of the trait

(supplementary Table 2). However, a haplotype analysis using

both G6PD markers (202/376: CT [B - enzymatic group], CC

[A+ deficiency], and TC [A- deficiency]), indicated no strong

evidence of association with protection (P.0.1; supplementary

table 4). Interestingly, polymorphisms in another X-linked gene,

namely that encoding the T cell co-stimulatory receptor CD40

ligand (CD40L; CD154), were associated with either an increased

(rs3092945: OR (TT vs. CT/CC) = 5.27, 95% CI 1.491–18.621,

p = 0.01) or a decreased (rs1126535; OR (TT vs. CT/

CC) = 0.331, 95% CI 0.143–0.766, p = 0.006) risk of respiratory

distress (supplementary table 3). The haplotypic analysis indicates

that having CT haplotypes for rs3092945 and rs1126535 was a

risk of developing respiratory distress in females (OR = 1.768,

95%CI 1.027–3.043, p = 0.040; supplementary table 5).

Polymorphisms in three other genes of known immunological

function were also associated with altered risk of severe malaria.

Carriage of the rs17411697 SNP in the gene encoding IL-1a was

associated with an increased risk of acidosis (GT or TT vs. GG,

OR = 1.681, 95% CI 1.185–2.382, p = 0.0035), whereas carriage

of the rs1800890 SNP in the IL-10 gene was associated with a

decreased risk of severe malaria (additive T, OR = 0.747, 95% CI

0.588–0.949, p = 0.0165) but not with any of the individual severe

malaria syndromes. Carriage of the rs7935564 SNP in the gene

encoding TRIM5 (an E3 ubiquitin-ligase) was associated with an

Figure 2. Severe malaria phenotypes; minimum p-values from tests of association for the autosomal SNPs. genotypic tests of
dominant, recessive, general, heterozygous advantage, and additive models, adjusted for ethnicity; the dashed line represents a p-value of 0.002.
doi:10.1371/journal.pone.0047463.g002
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increased risk of severe malaria (additive A, OR = 1.273, 95% CI

1.042–1.555, p = 0.02).

Discussion

We set out to investigate whether genetic polymorphisms

previously linked to altered risk of severe malaria, or implicated in

resistance to other acute infections, were linked to risk of severe

malaria in children living in the Tanga region of Tanzania. For

some of these polymorphisms, there have been discrepancies in

published findings, and these could be a result of variation in

phenotype definition, sample size differences, choice of controls,

village surveys versus hospital-based studies, immune status,

differences in linkage disequilibrium patterns between populations

[29], and potentially functional polymorphisms being distal from

candidate genes and polymorphisms genotyped [30]. To maximise

the robustness of any associations we detected, we standardised

recruitment procedures using case report forms, pre-defined the

criteria for diagnosis of severe malaria and various severe malaria

syndromes. In addition, all analyses were adjusted for the ethnicity

of the child and their ward of residence, thereby minimising

confounding effects and potential false positives arising from

population stratification.

The study confirmed the known (,90%) reduction in severe

malaria risk conferred by the haemoglobin B (sickle cell) AS

genotype [10]. The low frequency of the S allele in the control

children (,4.9%) is in keeping with other populations (see http://

www.map.ox.ac.uk/) in West (Burkina Faso 5.2%, Cameroon

Table 2. Results of association between selected SNP and syndromes of severe malaria.

Phenotype SNP Gene Maj/Min Con MAF CaseMAF Comparison O LCL UCL P

SM rs1800890 IL10 A/T 0.240 0.207 Additive T 0.747 0.588 0.949 0.0165

SM rs334 HBB A/T 0.083 0.016 AT vs. AA/TT 0.055 0.022 0.140 2.28E-18

SM rs7935564 TRIM5 G/A 0.412 0.456 Additive A 1.273 1.042 1.555 0.0176

CM rs334 HBB A/T 0.083 0.000 AT vs. AA/TT 0.000 NA NA 1.35E-07

CM rs542998 RTN3 T/C 0.363 0.495 Additive C 1.781 1.276 2.487 0.0006

CM rs20541 IL13 C/T 0.194 0.324 Additive T 2.020 1.346 3.030 0.0008

SMA Thala thala A/B 0.319 0.251 Additive B 0.703 0.533 0.927 0.0116

SMA rs334 HBB A/T 0.083 0.021 AT vs. AA/TT 0.047 0.011 0.196 3.47E-11

RD rs334 HBB A/T 0.083 0.007 AT vs. AA/TT 0.085 0.020 0.361 2.08E-06

Acid rs334 HBB A/T 0.083 0.012 AT vs. AA/TT 0.021 0.003 0.150 7.07E-14

Acid rs2230739 ADCY9 A/G 0.077 0.057 AG vs. AA/GG 0.516 0.302 0.882 0.0129

Acid rs17411697 IL1A G/T 0.156 0.222 GT/TT vs. GG 1.681 1.185 2.383 0.0035

SM – M rs1050829 G6PD T/C 0.371 0.366 C vs. T 1.003 0.667 1.509 0.9885

SM – F rs1050829 G6PD T/C 0.400 0.340 CT vs. CC/TT 0.437 0.289 0.660 6.71E-05

SM – M rs1050828 G6PD C/T 0.193 0.146 T vs. C 0.770 0.458 1.293 0.3228

SM – F rs1050828 G6PD C/T 0.211 0.174 CT vs. CC/TT 0.514 0.323 0.819 0.0046

SMA – M rs1050829 G6PD T/C 0.371 0.389 C vs. T 1.055 0.643 1.729 0.8325

SMA – F rs1050829 G6PD T/C 0.400 0.295 CT vs. CC/TT 0.278 0.154 0.501 8.64E-06

SMA – M rs1050828 G6PD C/T 0.193 0.170 T vs. C 0.926 0.500 1.713 0.8052

SMA – F rs1050828 G6PD C/T 0.211 0.139 CT vs. CC/TT 0.322 0.159 0.650 0.0008

RD – M rs3092945 CD40LG T/C 0.223 0.189 C vs. T 0.793 0.377 1.667 0.5372

RD – F rs3092945 CD40LG T/C 0.205 0.313 CC vs. CT/TT 5.270 1.491 18.621 0.0096

RD – M rs1126535 CD40LG T/C 0.209 0.237 C vs. T 1.301 0.634 2.670 0.4755

RD – F rs1126535 CD40LG T/C 0.238 0.159 CT vs. CC/TT 0.331 0.143 0.766 0.0062

RD – M rs1050829 G6PD T/C 0.371 0.458 C vs. T 1.369 0.748 2.505 0.3101

RD – F rs1050829 G6PD T/C 0.400 0.352 CT vs. CC/TT 0.308 0.154 0.615 0.0006

RD – M rs1050828 G6PD C/T 0.193 0.203 T vs. C 1.035 0.496 2.160 0.9280

RD – F rs1050828 G6PD C/T 0.211 0.164 CT vs. CC/TT 0.460 0.214 0.989 0.0398

Acid – M rs1050829 G6PD T/C 0.371 0.362 C vs. T 1.024 0.632 1.659 0.9227

Acid – F rs1050829 G6PD T/C 0.400 0.335 CT vs. CC/TT 0.345 0.205 0.580 3.71E-05

Acid – M rs1050828 G6PD C/T 0.193 0.138 T vs. C 0.781 0.419 1.453 0.4319

Acid – F rs1050828 G6PD C/T 0.211 0.158 CT vs. CC/TT 0.495 0.279 0.879 0.0145

SM = severe malaria, SMA = severe malarial anaemia, CM = cerebral malaria, RD = respiratory distress, Acid = acidosis, MinA = minor allele, MajA = major allele,
ConMAF = minor allele frequency in controls, CaseMAF = minor allele frequency in cases, OR = odds ratio, 95% Confidence interval (LCL, UCL), P = P-value; for X
chromosome SNPs (rs1126535 (CD40), rs1050829 (G6PD-376), rs1050828 (G6PD-202/A-), analyses are presented for separately for females (F) and males (M), NA not
applicable, *.
doi:10.1371/journal.pone.0047463.t002
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6.5%, Gambia 7.6%, Ghana 6.5%, Mali 3.8%) and East Africa

(Kenya 6.4%, Malawi 2.7%).

The a+-thalassaemia polymorphism was also associated with

severe malaria anaemia, confirming observations in other studies

[9,31]. This can be explained by the observation that in a-

thalassaemics the mechanical destruction of infected red blood

cells that leads to anaemia is slowed or prevented [32]. Similarly, a

recent study in Papua New Guinea [31] found that homozygous

a+- thalassaemia children are protected from the risk of severe

malarial anaemia by a lower reduction in haemoglobin concen-

tration compared to children of wild-type genotype through

increased erythrocyte count and microcytosis.

The study also confirmed the well-described association

between X-linked G6PD deficiency and protection from severe

malaria. The geographical distribution of G6PD deficiency offers

strong evidence for its selection by malaria; increased oxidative

stress in G6PD-deficient red blood cells is assumed to reduce

parasite replication and thereby confer protection (reviewed in

[8]). Some studies have reported that both hemizygous males and

heterozygous females are protected [33] whereas other studies

suggest either that only male hemizygotes are protected [11,34] or

that, as observed here, protection is limited to female heterozy-

gotes [35]. These discrepancies may be due to allelic/haplotypic

heterogeneity and more detailed resolution of individual alleles will

be required to identify true causal relationships [36].

Interestingly, we found evidence that polymorphisms in another

X-linked gene (CD40L) were associated with altered risk of

respiratory distress, and that a particular CD40L haplotype was

particularly associated with increased disease risk in females. By

contrast, in The Gambia, males hemizygous for the CD40L–726C

(rs17424229) had a reduced risk of developing severe malaria [17].

CD40-L is a stimulatory co-receptor expressed by activated CD4+
T cells, and plays a pivotal role in augmenting T cell mediated

immune function. T cell hypo-responsiveness may predispose to

failure to clear an infection whereas hyper-responsiveness may

lead to immunopathology.

Polymorphism in the adenyl cyclase 9 gene (ADCY9-

rs2230739A.G in a heterozygous model) was associated with

decreased risk of acidosis. Adenyl cyclase 9 is a component of the

stimulatory G protein (Gs) pathway. Inhibition of the Gs signaling

pathway in human erythrocytes blocks merozoite invasion and

inhibits intracellular parasite maturation [37]suggesting that

mutations in genes within this pathway might plausibly be linked

to malaria outcomes [38]. Although there was no evidence that

adenyl cyclase 9 polymorphisms were associated with severe

malaria outcomes in a large study of cases from Malawi and The

Gambia [39], SNPs in two other genes in the Gs signal

transduction pathway - adenosine receptor 2 (ADORA2A) and

G-alpha-s (GNAS) - have been linked to altered risk of severe

malaria in multicentre studies in The Gambia, Malawi and Kenya

[39,40]. Data from studies on chronic acidosis suggest that the

high proton concentrations exerted by acidosis stimulate proton

sensitive G-protein-coupled receptors, which are mediated by the

cellular cAMP/PKA pathway and it is possible that mutations in

Gs would modify this effect [41]. Taken together, these studies

suggest that modulation of the Gs signal transduction pathway

may modulate the outcome of malaria infection. The number of

different associations detected, across different SNPs and loci,

suggest that this pathway may be a biologically relevant modulator

of host susceptibility to malaria.

The role of IL-10 in limiting the pathological consequences of

malaria-induced inflammation is well established (reviewed in

[42]). IL-10 deficient mice infected with normally resolving

malaria infections succumb to acute immunopathology [43], high

ratios of serum IL-10 to proinflammatory cytokines such as IFN-c,

TNF and IL-12 are associated with positive clinical outcomes

[44,45,46] and IL-10-secreting T cells have been correlated with

resistance to severe malaria pathology [47,48]. Furthermore,

polymorphisms involving the IL-10 promoter region have been

associated with both severe malaria outcomes and IL-10

production levels in Kenya [49] and Mozambique [50], and

polymorphisms in the IL-10 receptor gene promoter have also

been linked to protection against severe malaria in Gabon [51],

but the results of a family based study in The Gambia raised

questions as to whether associations with IL-10 signalling

pathways might be confounded by foetal survival rates or other

sources of inheritance bias [26]. Nevertheless, the evidence from

the present study reinforces IL-10 signalling as a pathway of

interest for regulating the severe outcomes of malaria infection.

In this study, carriage of the rs20541C.T polymorphism was

associated with increased risk of developing cerebral malaria; this

polymorphism introduces a nonsynonymous change in exon 4 of

the gene encoding IL-13. In line with the known role of IL-13 in

induction of Th2 responses, rs20541polymorphisms have also

been linked to allergy and autoimmune disease [52,53] as well as

altered outcomes of helminth (Schistosome spp) infections [54].

Our data support other studies implicating IL-13 polymorphisms

with risk of severe malaria in Thai adults [55,56] and associations

between 5q31–q33 haplotypes (which span the IL13 locus) and

antimalarial antibody responses [57]; the recurrent link between

IL-13 and risk of severe malaria would seem to warrant further

investigation.

TRIM5 (an E3 ubiquitin ligase) is an innate immune signalling

molecule that activates pro-inflammatory signalling pathways

leading to activation of NF-kB and AP-1 [58]. Mutations in

TRIM5 have been associated with HIV susceptibility in different

populations (reviewed in [59]), presumably explained by the ability

of TRIM5a to bind HIV virions and target them for proteosomal

destruction [60], but have not previously been linked to malaria

susceptibility.

We observed associations between polymorphisms in reticulon 3

(RTN3- rs542998) and increased risk of cerebral malaria.

Table 3. Interaction between alpha-thalassaema and HbS
and severe malaria.

Phenotype HbS/thal OR** LCL UCL P

SM AA/AA 1.000

SM AA/AB 0.945 0.687 1.301 0.7292

SM AA/BB 0.587 0.342 1.004 0.0517

SM AS/AA 0.115 0.039 0.340 ,0.0001

SM AS/AB 0.092 0.031 0.275 ,0.0001

SM AS/BB 0.115 0.014 0.976 0.0475

SMA AA/AA 1.000

SMA AA/AB 0.779 0.524 1.157 0.2162

SMA AA/BB 0.413 0.203 0.839 0.0145

SMA AS/AA 0.150 0.042 0.528 0.0031

SMA AS/AB 0.126 0.036 0.437 0.0011

SMA AS/BB - - - -

*No significant evidence of a statistical interaction P.0.4, OR = odds ratio, 95%
Confidence interval (LCL, UCL), P = P-value, SM = severe malaria, SMA = severe
malarial anaemia,
**adjusted for age, gender and ethnicity.
doi:10.1371/journal.pone.0047463.t003
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Reticulon 3 is a ubiquitously expressed endoplasmic reticulum

protein and is believed to be involved in membrane trafficking in

the early secretory pathway [61]. It is of interest that RTN3

expression has been repeatedly associated with neurodegenerative

diseases in humans [62] and that RTN3 is differentially expressed

in brains of experimental malaria resistant and susceptible strains

of mice infected with Plasmodium berghei ANKA [63].

Conclusions

This study confirms previously known genetic associations with

protection from severe malaria (HbS, G6PD and a+- thalassae-

mia). The study also identifies two X-linked genes associated with

altered risk of severe malaria in females, identifies mutations in

ADCY9, IL1A and CD40L as being associated with altered risk of

severe respiratory distress and acidosis, both of which are

characterised by high serum lactate levels, and also identifies two

novel (IL-13 and RTN3) genetic associations with cerebral

malaria. The RTN3 and TRIM5 associations draw attention to

the potential role of intracellular protein trafficking and degrada-

tion in the pathogenesis of severe malaria but further studies are

needed in areas of differing malaria epidemiology to replicate

these findings and understand their functional consequences. The

testing of multiple data sets, from diverse malaria endemic regions,

within the MalariaGEN consortium offers a powerful route to

validate these genetic associations [64].
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